Урок 12. Водород и кислород – HIMI4KA

СодержаниеВодородКислородВодаВыводы Водород Водород — самый распространённый химический элемент во Вселенной. Именно он составляет основу горючего вещества Звёзд. Водород — первый химический элемент Периодической системы Менделеева. Его атом имеет простейшее строение: вокруг элементарной частицы «протон» (ядро атома) вращается один-единственный электрон: Природный водород состоит из трех изотопов: протий 1Н, дейтерий 2Н и тритий 3Н. Задание 12.1. Укажите […]

Водород

Водород — самый распространённый химический элемент во Вселенной. Именно он составляет основу горючего вещества Звёзд.

Водород — первый химический элемент Периодической системы Менделеева. Его атом имеет простейшее строение: вокруг элементарной частицы «протон» (ядро атома) вращается один-единственный электрон:

Природный водород состоит из трех изотопов: протий 1Н, дейтерий 2Н и тритий 3Н.

Задание 12.1. Укажите строение ядер атомов этих изотопов.

Имея на внешнем уровне один электрон, атом водорода может проявлять единственно возможную для него валентность I:

Вопрос. Образуется ли завершённый внешний уровень при приёме атомом водорода электронов?

Таким образом, атом водорода может и принимать, и отдавать один электрон, т. е. является типичным неметаллом. В любых соединениях атом водорода одновалентен.

Простое вещество «водород» Н2 — газ без цвета и запаха, очень лёгкий. Он плохо растворим в воде, но хорошо растворим во многих металлах. Так, один объём палладия Рd поглощает до 900 объёмов водорода.

Схема (1) показывает, что водород может быть и окислителем, и восстановителем, реагируя с активными металлами и многими неметаллами:

Задание 12.2. Определите, в каких реакциях водород является окислителем, а в каких — восстановителем. Обратите внимание, что молекула водорода состоит из двух атомов.

Смесь водорода и кислорода является «гремучим газом», поскольку при поджигании её происходит сильнейший взрыв, который унёс многие жизни. Поэтому опыты, в которых выделяется водород, нужно выполнять подальше от огня.

Чаще всего водород проявляет восстановительные свойства, что используется при получении чистых металлов из их оксидов*:

* Аналогичные свойства проявляет алюминий (см. урок 10 — алюминотермия).

Разнообразные реакции происходят между водородом и органическими соединениями. Так, за счёт присоединения водорода (гидрирование) жидкие жиры превращаются в твёрдые (подробнее урок 25).

Водород можно получить разными способами:

  • Взаимодействием металлов с кислотами:

Задание 12.3. Составьте уравнения таких реакций для алюминия, меди и цинка с соляной кислотой. В каких случаях реакция не идет? Почему? В случае затруднения см. уроки 2.2 и 8.3;

  • Взаимодействие активных металлов с водой:

Задание 12.4. Составьте уравнения таких реакций для натрия, бария, алюминия, железа, свинца. В каких случаях реакция не идёт? Почему? В случае затруднений см. урок 8.3.

В промышленных масштабах водород получают электролизом воды:

а также при пропускании паров воды через раскалённые железные опилки:

Водород — самый распространённый элемент Вселенной. Он составляет бОльшую часть массы звёзд и участвует в термоядерном синтезе — источнике энергии, которую эти звёзды излучают.

Характеристики

Кислородно-водород воспламеняется при достижении температуры самовоспламенения . Для стехиометрической смеси водород: кислород 2: 1 при нормальном атмосферном давлении самовоспламенение происходит примерно при 570 ° C (1065 ° F). Минимальная энергия, необходимая для воспламенения такой смеси искрой, составляет около 20 микроджоулей . При стандартной температуре и давлении кислородный водород может гореть, если он составляет от 4% до 95% водорода по объему.

При воспламенении газовой смеси , обращенные в водяной пар и высвобождает энергию , которая поддерживает реакцию: 241,8 кДж энергии ( LHV ) для каждого моля из H 2 сожжены. Количество выделяемой тепловой энергии не зависит от режима горения, но температура пламени меняется. Максимальная температура около 2800 ° C (5100 ° F) достигается с точной стехиометрической смесью, которая примерно на 700 ° C (1300 ° F) горячее, чем водородное пламя в воздухе. Когда любой из газов смешивается с превышением этого отношения или когда смешивается с инертным газом, таким как азот, тепло должно распространяться по большему количеству вещества, и температура будет ниже.

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных  между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069;  незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема  H2).  Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

водород получение как собирать газ аппарат киппа

Производство

Чистую стехиометрическую смесь можно получить электролизом воды , при котором для диссоциации молекул воды используется электрический ток :

электролиз: 2 H 2 O → 2 H 2 + O 2 горение: 2 H 2 + O 2 → 2 H 2 O

Уильям Николсон был первым, кто разложил воду таким образом в 1800 году. Теоретически входная энергия замкнутой системы всегда будет равна выходной энергии, как гласит первый закон термодинамики . Однако на практике никакие системы не являются идеально замкнутыми, и энергия, необходимая для генерации кислородного водорода, всегда будет превышать энергию, выделяемую при его сжигании, даже при максимальной практической эффективности, как предполагает второй закон термодинамики (см. Электролиз воды # Эффективность ).

Получение водорода

В лаборатории:

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl2 +H2↑

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H2O → Ca(OH)2 +H2↑

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H2O → NaOH +H2↑
СаH2 + 2Н2О = Са(ОН)2 + 2Н2↑

4.Действие щелочей на цинк  или алюминий или кремний:
2Al +2NaOH +6H2O → 2Na[Al(OH)4] +3H2↑
Zn +2KOH +2H2O → K2[Zn(OH)4] +H2↑
Si + 2NaOH + H2O → Na2SiO3 + 2H2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н2SO4 или Na2SO4. На катоде образуется 2 объема водорода, на аноде — 1 объем кислорода.
2H2O → 2H2+О2

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH4 + H2O → CO + 3 H2   
CO + H2O → CO2 + H2

В сумме:
CH4 + 2 H2O → 4 H2 + CO2

2. Пары воды через раскаленный кокс при 1000оС:
С + H2O → CO + H2
CO +H2O → CO2 + H2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH4 → С + 2Н2↑

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2Н2О + 2NaCl→ Cl2↑ + H2↑ + 2NaOH

Приложения

Limelights

использовали кислородно-водородное пламя в качестве высокотемпературного источника тепла.

Освещение

Описаны многие формы кислородно-водородных ламп , например, прожектор , в котором для нагрева извести до белого каления использовалось кислородно-водородное пламя . Из-за взрывоопасности кислородсодержащего водорода освещение в центре внимания было заменено электрическим .

Водородно-кислородная трубка

Кислородно-водородная трубка с сильфонным приводом девятнадцатого века, включающая два разных типа

пламегасителя.

Основы кислородно-водородной паяльной трубки были заложены Карлом Вильгельмом Шееле и Джозефом Пристли примерно в последней четверти восемнадцатого века. Сама кислородно-водородная трубка была разработана французом Бошаром-де-Сароном, английским минералогом Эдвардом Даниэлем Кларком и американским химиком Робертом Хэром в конце восемнадцатого и начале девятнадцатого веков. Он производил пламя, достаточно горячее, чтобы плавить такие тугоплавкие материалы, как платина , фарфор , огнеупорный кирпич и корунд , и был ценным инструментом в нескольких областях науки. Он используется в процессе Верней для производства синтетического корунда.

Кислородно-водородная горелка

Гремучие горелки (также известная как факел водорода ) представляет собой окси-газовая горелка , которая сжигает водород (The топливо ) с кислородом (The окислитель ). Он используется для резки и сварки металлов , стекла и термопластов .

Из-за конкуренции со стороны дуговой сварки и других газокислородных горелок, таких как резак, работающий на ацетиленовом топливе, кислородно-водородная горелка сегодня используется редко, но остается предпочтительным режущим инструментом в некоторых нишевых приложениях.

Когда-то для обработки платины использовался кислород-кислород , потому что в то время только он мог гореть достаточно горячо, чтобы расплавить металл до 1768,3 ° C (3214,9 ° F). Эти методы были заменены дуговой печью .

Вода

Воду нельзя ничем заменить — этим она отличается практически от всех других веществ, которые встречаются на нашей планете. Воду может заменить только сама вода. Без воды нет жизни: ведь жизнь на Земле возникла тогда, когда на ней появилась вода. Жизнь зародилась в воде, поскольку она является естественным универсальным растворителем. Она растворяет, а значит, измельчает все необходимые питательные вещества и обеспечивает ими клетки живых организмов. А в результате измельчения резко возрастает скорость химических и биохимических реакций. Более того, без предварительного растворения невозможно протекание 99,5 % (199 из каждых 200) реакций! (См. также урок 5.1.)

Известно, что взрослый человек в сутки должен получать 2,5–3 л воды, столько же выводится из организма: т. е. в организме человека существует водный баланс. Если он нарушается, человек может просто погибнуть. Например, потеря человеком всего 1–2 % воды вызывает жажду, а 5 % — повышает температуру тела вследствие нарушения терморегуляции: возникает сердцебиение, возникают галлюцинации. При потере 10 % и более воды в организме возникают такие изменения, которые уже могут быть необратимы. Человек погибнет от обезвоживания.

Вода — уникальное вещество. Её температура кипения должна составлять –80 °C (!), однако равна +100 °C. Почему? Потому что между полярными молекулами воды образуются водородные связи:

Поэтому и лёд, и снег — рыхлые, занимают больший объём, чем жидкая вода. В результате лёд поднимается на поверхность воды и предохраняет обитателей водоёмов от вымерзания. Свежевыпавший снег содержит много воздуха и является прекрасным теплоизолятором. Если снег покрыл землю толстым слоем, то и животные и растения спасены от самых суровых морозов.

Кроме того, вода имеет высокую теплоёмкость и является своеобразным аккумулятором тепла. Поэтому на побережьях морей и океанов климат мягкий, а хорошо политые растения меньше страдают от заморозков, чем сухие.

Без воды в принципе невозможен гидролиз, химическая реакция, которая обязательно сопровождает усвоение белков, жиров и углеводов, которые являются обязательными компонентами нашей пищи. В результате гидролиза эти сложные органические вещества распадаются до низкомолекулярных веществ, которые, собственно, и усваиваются живым организмом (подробнее см. уроки 25–27). Процессы гидролиза были нами рассмотрены в уроке 6. Вода реагирует со многими металлами и неметаллами, оксидами, солями.

Задание 12.6. Составьте уравнения реакций:

  1. натрий + вода →
  2. хлор + вода →
  3. оксид кальция + вода →
  4. оксид серы (IV) + вода →
  5. хлорид цинка + вода →
  6. силикат натрия + вода →

Изменяется ли при этом реакция среды (рН)?

Вода является продуктом многих реакций. Например, в реакции нейтрализации и во многих ОВР обязательно образуется вода.

Задание 12.7. Составьте уравнения таких реакций.

img_59e22c01a17c0.png

Крайняя наука

Газ Брауна связан с различными преувеличенными утверждениями. Его часто называют «HHO газом», термином популяризировал бахрома физик Руджеро Сантилли , который утверждал , что его HHO газ, произведенный с помощью специального аппарата, является «новой формой воды», с новыми свойствами, на основе его теории бахромы из « магнекулы ».

О газе Брауна было сделано много других псевдонаучных заявлений, таких как способность нейтрализовать радиоактивные отходы, способствовать прорастанию растений и многое другое. Однако хорошо известно, что ионы водорода составляют основу баланса pH в любом растворе, что может объяснить, почему эта форма воды может помочь семенам в некоторых случаях обрести всхожесть.

Оксигидроген часто упоминается в связи с транспортными средствами, которые утверждают, что используют воду в качестве топлива . Самый распространенный и решающий контраргумент против производства этого газа на борту для использования в качестве топлива или топливной добавки заключается в том, что для расщепления молекул воды всегда требуется больше энергии, чем возмещается путем сжигания образующегося газа. Кроме того, объем газа, который может быть произведен для потребления по требованию посредством электролиза, очень мал по сравнению с объемом, потребляемым двигателем внутреннего сгорания.

В статье в Popular Mechanics сообщается, что газ Брауна не увеличивает экономию топлива в автомобилях .

Автомобили, работающие на водном топливе, не следует путать с автомобилями , работающими на водороде, где водород производится в другом месте и используется в качестве топлива или где он используется в качестве топлива для улучшения качества топлива .

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...