Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра — Прямые на координатной плоскости)

Электронный справочник по математике для школьников алгебра прямые на координатной плоскости приведены уравнения прямых графики линейных функций для разных знаков угловых коэффициентов и свободных членов разобран пример построения прямой параллельной заданной и прямой перпендикулярной заданной.

Линейная функция

      Линейной функцией называют функцию, заданную формулой

где   k   и   – произвольные (вещественные) числа.

      При любых значениях   k   и   графиком линейной функции является прямая линия.

      Число   k   называют угловым коэффициентом прямой линии (1), а число   свободным членом.

Системы координат

Под понятием координат в повседневной жизни понимается упорядоченный набор слов, цифр и прочих знаков, позволяющий определить местоположение человека, здания или другого объекта. Эти знания необходимы для ориентирования в современном обществе и организации любой человеческой деятельности.

Трудно даже представить себе мир без системы адресов и нумерации.

Примеры использования:

  • почтовый адрес;
  • номер места в театре, автобусе или самолёте;
  • обозначение положения фигур на шахматной доске;
  • географическая широта и долгота.
квадранты на координатной плоскости

Таким образом, система координат необходима не только в математике.

Она буквально пронзает всю человеческую жизнь.

Без применения этих научных знаний люди не смогли бы значительно отдалиться от животных и первобытных предков.

Некоторые области применения:

  1. Геометрия довольно часто пользуется методикой нахождения точки на координатной плоскости или в пространстве.
  2. Математика — построение графиков функций.
  3. География использует собственные координаты (широта и долгота).
  4. Астрономия определяет положение небесных объектов во вселенной.

По определению любая координатная система представляет собой ряд идентификационных данных, которые позволяют узнать положение точки или фигуры в пространстве, а также дают возможность проследить её перемещение.

Наибольшее распространение получила прямоугольная система координат, которую ещё называют декартовой, по имени создателя Рене Декарта. Её популярность основана на простоте и универсальности.

Другие виды координат:

Фигуры на координатной плоскости
  • полярные;
  • цилиндрические;
  • сферические;
  • косоугольные;
  • биангулярные;
  • биполярные;
  • конические;
  • бицентрические;
  • координаты Риндлера;
  • бицилиндрические;
  • параболические;
  • тороидальные;
  • проективные;
  • трилинейные;
  • эллипсоидальные.

Видя такое множество, можно смело сказать, что задать координаты на плоскости, в двумерном или трёхмерном пространстве можно бесчисленным количеством способов. Для решения определённой задачи стоит выбирать наиболее подходящий метод из всех имеющихся.

Определение понятия

Координатная плоскость — это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.

В школьном курсе математики школьникам приходится довольно тесно работать с системой координат – строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.

Уравнение окружности

Попытаемся составить уравнение окружности, про которую нам известен ее радиус (обозначим его буквой r) и координаты центра окруж-ти(х0; у0). Пусть некоторая точка М с координатами (х; у) лежит на окруж-ти. Тогда, по определению окруж-ти, расстояние между С и М равно радиусу r:

8 linii na ploskosti

Но расстояние между точками М и С может быть вычислено по формуле

9 linii na ploskosti

Если же точка М НЕ лежит на окруж-ти, то длина отрезка МС не будет равна r, и потому координаты М не будут удовлетворять уравнению (1). Получается, что (1) как раз и является уравнением окруж-ти.

10 linii na ploskosti

Задание. Составьте уравнение окружности, имеющей радиус 5, если ее центр находится в точке (6; 7), и проверьте, лежат на ней точки H(2; 10)и Р(3; 8).

Решение. Сначала запишем уравнение окруж-ти в общем виде

11 linii na ploskosti

Это и есть уравнение окруж-ти. При желании можно раскрыть скобки в правой части, но делать это необязательно. Теперь будем подставлять в полученное уравнение координаты точек Н и Р:

12 linii na ploskosti

Проверка показала, что Н находится на окруж-ти, а Р – нет.

Задание. Начертите окружность, заданную уравнением

13 linii na ploskosti

Именно эти значения и являются параметрами окруж-ти, которые нужны нам для ее построения. Ее центр находится в точке (х0; у0), то есть в (1; – 2), радиус равен r, то есть 2. В итоге выглядеть она будет так:

14 linii na ploskosti

Особый случай представляет окруж-ть, центр которой находится в начале координат, то есть в точке (0; 0). В этом случае параметры x0 и y0 окруж-ти равны нулю, и уравнение

15 linii na ploskosti

Например, окруж-ть с радиусом 4, если ее центр совпадает с началом координат, описывается уравнением:

16 linii na ploskosti

Если при подстановке координат точки в уравнение получилось неверное равенство, то возможны два случая: либо точка находится внутри окруж-ти, либо она находится вне нее. Заметим, что в уравнении окруж-ти

17 linii na ploskosti

левая часть представляет собой квадрат расстояния между точкой (х; у) и центром окруж-ти (х0; у0). Если оно больше квадрата радиуса, то точка находится вне окруж-ти, а если меньше – то внутри нее.

Задание. Определите для точек M(3; 4), N(2; 3), F(4; 4), лежат ли они на окруж-ти

x2 + y2 = 25

внутри нее или за пределами окруж-ти.

Решение.Снова подставляем координаты точек в уравнение окруж-ти:

18 linii na ploskosti

Это ошибочное равенство, ведь в реальности левая часть больше:

32 > 25

Это значит, что F(4; 4) лежит вне окруж-ти. Убедиться в правильности сделанных выводов можно, построив заданную окруж-ть и отметив точки M, N и F:

19 linii na ploskosti

Рассмотрим несколько более сложных задач по данной теме.

Задание.Запишите уравнение окружности с центром С(– 4; 2), и окруж-ть проходит через точку А(0; 5).

Решение. В данном случае радиус окруж-ти явно не указан, и его надо найти. Подставим в уравнение окруж-ти известные нам данные:

20 linii na ploskosti

Задание. Даны точки К (– 2; 6) и М (2; 0). Запишите уравнение окруж-ти, в которой КМ будет являться диаметром.

Решение. Для составления уравнения нужно знать радиус окруж-ти и координаты ее центра. Обозначим центр буквой С. Ясно, что центр окруж-ти делит любой ее диаметр пополам, на два одинаковых радиуса, то есть является серединой диаметра. То есть С – середина КМ, а потому для поиска координат С используем формулы:

21 linii na ploskosti

Итак, координаты центра теперь известны, это (0; 3). Чтобы найти радиус, поступим также, как и в предыдущей задаче – подставим координаты точек С и, например, К, в уравнение окруж-ти

22 linii na ploskosti

Обратите внимание, что нам необязательно вычислять радиус, ведь для уравнении окруж-ти нужна его величина, возведенная в квадрат, и мы ее нашли. Теперь можем записать уравнение окончательно

23 linii na ploskosti

Задание. Дано уравнение окружности

(x — 2)2 + (y — 4)2 = 9

Найдите точки этой окруж-ти, абсцисса которых равна 2.

Решение. Напомним, что абсцисса – это координат х точки. Она нам уже известна, х = 2. Остается только найти ординату, то есть координату у. Для этого подставим известное нам значение абсциссы в уравнение и решим его:

24 linii na ploskosti

Обратите внимание, что у квадратного уравнения нашлось сразу 2 корня, они соответствуют двум точкам, (2; 1) и (2; 7).

Ответ: (2; 1) и (2; 7).

Задание. Составьте уравнение окружности, проходящей через точки D(3; 8), L(6; 7) и K(7; 0).

Решение. Эта задача сложнее предыдущих и потребует громоздких вычислений. Нам надо найти радиус окруж-ти r и ее центр (х0; у0). Запишем для точки D(3; 8) уравнение окруж-ти:

25 linii na ploskosti

Далее раскроем скобки в левой части, используя формулу квадрата разности (это необходимо для упрощения дальнейших расчетов):

26 linii na ploskosti

В итоге нам удалось составить три уравнения, которые содержат три переменные: r, х0 и у0.Вместе они образуют систему уравнений, которую можно попробовать решить:

27 linii na ploskosti

Далее можно, например, вычесть из (2) уравнение (3):

28 linii na ploskosti

Нам удалось найти одно из интересующих нас чисел, у0. С помощью (5) легко найдем и х0:

x0 = 7y0 — 18 = 7*3 — 18 = 21 — 18 = 3

Итак, центр окруж-ти находится в точке (3; 3). Осталось найти радиус окруж-ти. Для этого подставим в уравнение окруж-ти вычисленные нами координаты центра, а также координаты одной из точек из условия, например, K(7; 0):

29 linii na ploskosti

Радиус окруж-ти равен 5. Теперь мы можем окончательно записать уравнение окруж-ти

30 linii na ploskosti

Чтобы убедиться в правильности найденного решения, можно подставить в полученное уравнение координаты трех точек из условия и посмотреть, обращают ли они его в верное равенство. Вместо этого мы для наглядности просто построим в координатной плоскости получившуюся окруж-ть и отметим на ней точки из условия:

31 linii na ploskosti

Ответ: (х – 3)2 + (у – 3)2 = 25

Оси координат

на координатной плоскости

Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.

Первая ось — абсцисс — горизонтальная. Она обозначается как (Ox). Вторая ось — ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0. Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.

Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

Четверти

координаты точек на координатной плоскости

Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.

Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината — положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной — ордината.

Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.

Уравнение вида   px + qy = r . Параллельные прямые. Перпендикулярные прямые

      Рассмотрим уравнение

где   p, q, r  – произвольные числа.

      В случае, когда Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию.

      Действительно,

Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики
Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики

что и требовалось.

      В случае, когда Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики получаем:

Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

      В случае, когда   q = 0,   p = 0,  уравнение (4) имеет вид

и при r = 0 его решением являются точки всей плоскости:

Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики

      В случае, когда Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики уравнение (5) решений вообще не имеет.

      Замечание 2. При любом значении  r1, не совпадающем с   r  прямая линия, заданная уравнением

параллельна прямой, заданной уравнением (4).

      Замечание 3. При любом значении   r2 прямая линия, заданная уравнением

перпендикулярна прямой, заданной уравнением (4).

      Пример. Составить уравнение прямой, проходящей через точку с координатами    (2; – 3) и

  1. параллельной к прямой
  2. перпендикулярной к прямой (8).

      Решение.

  1. В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

    где  r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами   (2; – 3), то справедливо равенство

    Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики

          Итак, уравнение прямой, параллельной к прямой

    4x + 5y = 7,

    задаётся уравнением

    4x + 5y = – 7 .

  2. В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

    где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами   (2; – 3), то справедливо равенство

    Прямые на координатной плоскости параллельные прямые перпендикулярные прямые графики

          Итак, прямая, перпендикулярная к прямой

    4x + 5y = 7 ,

    задаётся уравнением

    – 5x + 4y = – 22 .

Подготовка к ЕГЭ и ОГЭ в учебном центре Резольвента

Особенности использования в географии

С развитием современных технологий определение географических координат очень упростилось.

Координатная плоскость в географии

Достаточно запустить одно из навигационных приложений или войти в специальный онлайн-сервис, и местоположение будет указано с максимальной точностью.

Поверхность земли имеет сферическую форму, из-за этого географическая система координат имеет свои особенности.

Обозначение любой точки на планете осуществляется при помощи набора цифробуквенных обозначений:

  • широта бывает северная и южная;
  • долгота — восточная и западная;
  • высота над уровнем моря.

Все точки одной широты соединяются параллелями. На экваторе широта составляет 0 градусов, а на полюсе 90. Меридианы соединяют точки с одним и тем же показателем долготы и сходятся на полюсах.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...